Moving Averages: Was sind sie Unter den beliebtesten technischen Indikatoren werden gleitende Mittelwerte verwendet, um die Richtung des aktuellen Trends zu messen. Jede Art von gleitendem Durchschnitt (gemeinhin in diesem Tutorial als MA geschrieben) ist ein mathematisches Ergebnis, das durch Mittelung einer Anzahl von vergangenen Datenpunkten berechnet wird. Sobald es bestimmt ist, wird der daraus resultierende Mittelwert dann auf eine Tabelle aufgetragen, um es den Händlern zu ermöglichen, auf geglättete Daten zu schauen, anstatt sich auf die täglichen Preisschwankungen zu konzentrieren, die in allen Finanzmärkten inhärent sind. Die einfachste Form eines gleitenden Durchschnitts, der als einfacher gleitender Durchschnitt (SMA) bekannt ist, wird berechnet, indem das arithmetische Mittel eines gegebenen Satzes von Werten genommen wird. Um beispielsweise einen gleitenden 10-Tage-Durchschnitt zu berechnen, würden Sie die Schlusskurse der letzten 10 Tage addieren und dann das Ergebnis mit 10 teilen. In Abbildung 1 ist die Summe der Preise für die letzten 10 Tage (110) Geteilt durch die Anzahl von Tagen (10), um den 10-Tage-Durchschnitt zu erreichen. Wenn ein Trader einen 50-Tage-Durchschnitt sehen möchte, würde die gleiche Art der Berechnung gemacht, aber er würde auch die Preise in den letzten 50 Tagen enthalten. Der daraus resultierende Durchschnitt unter (11) berücksichtigt die letzten 10 Datenpunkte, um den Händlern eine Vorstellung davon zu geben, wie ein Vermögenswert im Verhältnis zu den vergangenen 10 Tagen bewertet wird. Vielleicht fragen Sie sich, warum technische Händler nennen dieses Tool einen gleitenden Durchschnitt und nicht nur ein normaler Durchschnitt. Die Antwort ist, dass, wenn neue Werte verfügbar werden, die ältesten Datenpunkte aus dem Satz fallen gelassen werden müssen und neue Datenpunkte hereinkommen müssen, um sie zu ersetzen. Somit bewegt sich der Datensatz ständig, um neue Daten, wie er verfügbar wird, zu berücksichtigen. Diese Berechnungsmethode stellt sicher, dass nur die aktuellen Informationen berücksichtigt werden. Wenn in Fig. 2 der neue Wert von 5 zu dem Satz hinzugefügt wird, bewegt sich das rote Feld (das die letzten 10 Datenpunkte darstellt) nach rechts und der letzte Wert von 15 wird aus der Berechnung entfernt. Weil der relativ kleine Wert von 5 den hohen Wert von 15 ersetzt, würden Sie erwarten, dass der Durchschnitt des Datensatzabbaus zu sehen, was er tut, in diesem Fall von 11 bis 10. Wie sehen sich die gleitenden Mittelwerte aus? MA berechnet worden sind, werden sie auf ein Diagramm aufgetragen und dann verbunden, um eine gleitende mittlere Linie zu erzeugen. Diese Kurvenlinien sind auf den Diagrammen der technischen Händler üblich, aber wie sie verwendet werden, können drastisch variieren (mehr dazu später). Wie Sie in Abbildung 3 sehen können, ist es möglich, mehr als einen gleitenden Durchschnitt zu irgendeinem Diagramm hinzuzufügen, indem man die Anzahl der Zeitperioden, die in der Berechnung verwendet werden, anpasst. Diese kurvenreichen Linien scheinen vielleicht ablenkend oder verwirrend auf den ersten, aber youll wachsen Sie daran gewöhnt, wie die Zeit vergeht. Die rote Linie ist einfach der durchschnittliche Preis in den letzten 50 Tagen, während die blaue Linie der durchschnittliche Preis in den letzten 100 Tagen ist. Nun, da Sie verstehen, was ein gleitender Durchschnitt ist und wie es aussieht, stellen Sie auch eine andere Art von gleitenden Durchschnitt ein und untersuchen, wie es sich von der zuvor genannten einfachen gleitenden Durchschnitt unterscheidet. Die einfache gleitende Durchschnitt ist sehr beliebt bei den Händlern, aber wie alle technischen Indikatoren, hat es seine Kritiker. Viele Personen argumentieren, dass die Nützlichkeit der SMA begrenzt ist, da jeder Punkt in der Datenreihe gleich gewichtet wird, unabhängig davon, wo er in der Sequenz auftritt. Kritiker argumentieren, dass die neuesten Daten bedeutender sind als die älteren Daten und sollten einen größeren Einfluss auf das Endergebnis haben. Als Reaktion auf diese Kritik begannen die Händler, den jüngsten Daten mehr Gewicht zu verleihen, was seitdem zur Erfindung verschiedener Arten von neuen Durchschnittswerten geführt hat, wobei der populärste der exponentielle gleitende Durchschnitt (EMA) ist. (Für weitere Informationen siehe Grundlagen der gewichteten gleitenden Mittelwerte und was ist der Unterschied zwischen einer SMA und einer EMA) Exponentieller gleitender Durchschnitt Der exponentielle gleitende Durchschnitt ist eine Art von gleitendem Durchschnitt, die den jüngsten Preisen mehr Gewicht verleiht, um sie reaktionsfähiger zu machen Zu neuen Informationen. Das Erlernen der etwas komplizierten Gleichung für die Berechnung einer EMA kann für viele Händler unnötig sein, da fast alle Kartierungspakete die Berechnungen für Sie durchführen. Jedoch für Sie Mathegeeks heraus dort, ist hier die EMA-Gleichung: Wenn Sie die Formel verwenden, um den ersten Punkt der EMA zu berechnen, können Sie feststellen, dass es keinen Wert gibt, der als das vorhergehende EMA benutzt werden kann. Dieses kleine Problem kann gelöst werden, indem man die Berechnung mit einem einfachen gleitenden Durchschnitt beginnt und mit der obigen Formel fortfährt. Wir haben Ihnen eine Beispielkalkulationstabelle zur Verfügung gestellt, die praktische Beispiele enthält, wie Sie sowohl einen einfachen gleitenden Durchschnitt als auch einen exponentiellen gleitenden Durchschnitt berechnen können. Der Unterschied zwischen der EMA und SMA Nun, da Sie ein besseres Verständnis haben, wie die SMA und die EMA berechnet werden, können wir einen Blick darauf werfen, wie sich diese Mittelwerte unterscheiden. Mit Blick auf die Berechnung der EMA, werden Sie feststellen, dass mehr Wert auf die jüngsten Datenpunkte gelegt wird, so dass es eine Art von gewichteten Durchschnitt. In Abbildung 5 sind die Anzahl der Zeitperioden, die in jedem Durchschnitt verwendet werden, identisch (15), aber die EMA reagiert schneller auf die sich ändernden Preise. Beachten Sie, wie die EMA einen höheren Wert hat, wenn der Preis steigt, und fällt schneller als die SMA, wenn der Preis sinkt. Diese Reaktionsfähigkeit ist der Hauptgrund, warum viele Händler es vorziehen, die EMA über die SMA zu verwenden. Was sind die verschiedenen Tage Durchschnittliche Mittelwerte sind eine völlig anpassbare Indikator, was bedeutet, dass der Benutzer frei wählen können, was Zeitrahmen sie bei der Schaffung der durchschnittlichen wollen. Die häufigsten Zeitabschnitte, die bei gleitenden Durchschnitten verwendet werden, sind 15, 20, 30, 50, 100 und 200 Tage. Je kürzer die Zeitspanne, die verwendet wird, um den Durchschnitt zu erzeugen, desto empfindlicher wird es für Preisänderungen sein. Je länger die Zeitspanne, desto weniger empfindlich, oder mehr geglättet, wird der Durchschnitt sein. Es gibt keinen richtigen Zeitrahmen für die Einrichtung Ihrer gleitenden Durchschnitte. Der beste Weg, um herauszufinden, welche am besten für Sie arbeitet, ist es, mit einer Reihe von verschiedenen Zeitperioden zu experimentieren, bis Sie eine finden, die zu Ihrer Strategie passt. Moving Averages: So verwenden Sie ThemThe Wissenschaftler und Ingenieure Leitfaden für digitale Signalverarbeitung Von Steven W. Smith, Ph. D. Kapitel 15: Verschieben von Durchschnittsfiltern Verwandte des Moving Average Filters In einer perfekten Welt müssten Filter-Designer nur mit Zeitdomänen - oder frequenzbereichskodierten Informationen umgehen, aber niemals eine Mischung aus beiden im selben Signal. Leider gibt es einige Anwendungen, bei denen beide Domains gleichzeitig wichtig sind. Zum Beispiel, Fernsehsignale fallen in diese fiese Kategorie. Die Videoinformation wird im Zeitbereich kodiert, dh die Form der Wellenform entspricht den Mustern der Helligkeit in dem Bild. Während der Übertragung wird das Videosignal jedoch entsprechend seiner Frequenzzusammensetzung, wie etwa seiner Gesamtbandbreite, behandelt, wie die Trägerwellen für die Tonampelfarbe addiert werden, die Eliminierungsampere-Wiederherstellung der Gleichspannungskomponente usw. Als ein anderes Beispiel ist eine elektromagnetische Interferenz Wird am besten im Frequenzbereich verstanden, auch wenn die Signalinformation im Zeitbereich codiert wird. Zum Beispiel könnte die Temperaturüberwachung in einem wissenschaftlichen Experiment mit 60 Hertz von den Stromleitungen, 30 kHz von einem Schaltnetzteil oder 1320 kHz von einer lokalen AM-Funkstation verunreinigt sein. Verwandte des gleitenden Durchschnittsfilters weisen eine bessere Frequenzbereichsleistung auf und können in diesen gemischten Domänenanwendungen nützlich sein. Multiple-Pass-Gleit-Durchschnittsfilter beinhalten, daß das Eingangssignal zweimal oder mehrmals durch einen gleitenden Durchschnittsfilter geleitet wird. Abbildung 15.3a zeigt den Gesamtfilterkern, der aus einem, zwei und vier Durchgängen resultiert. Zwei Durchläufe entsprechen der Verwendung eines dreieckigen Filterkerns (eines rechteckigen Filterkerns, der mit sich selbst konstruiert wurde). Nach vier oder mehr Durchgängen sieht der äquivalente Filterkernel wie ein Gaußscher (Rückruf des zentralen Grenzwertsatzes) aus. Wie in (b) gezeigt, erzeugen mehrere Durchgänge eine s-förmige Sprungantwort im Vergleich zu der geraden Linie des einzigen Durchgangs. Die Frequenzantworten in (c) und (d) sind durch Gl. 15-2 multipliziert mit sich für jeden Durchlauf. Das heißt, jede Zeitbereichs-Faltung führt zu einer Multiplikation der Frequenzspektren. Abbildung 15-4 zeigt den Frequenzgang zweier anderer Verwandter des gleitenden Durchschnittsfilters. Wenn ein reiner Gaußscher als Filterkern verwendet wird, ist der Frequenzgang auch ein Gaußscher, wie in Kapitel 11 erläutert. Der Gaußsche ist wichtig, weil er die Impulsantwort vieler natürlicher und künstlicher Systeme ist. Beispielsweise wird ein kurzer Lichtimpuls, der in eine lange faseroptische Übertragungsleitung eintritt, als ein Gaußscher Impuls aufgrund der unterschiedlichen Pfade, die von den Photonen innerhalb der Faser aufgenommen werden, austreten. Der Gaußsche Filterkernel wird auch weitgehend in der Bildverarbeitung verwendet, da er einzigartige Eigenschaften hat, die schnelle zweidimensionale Windungen ermöglichen (siehe Kapitel 24). Der zweite Frequenzgang in Fig. 15-4 entspricht der Verwendung eines Blackman-Fensters als Filterkernel. (Der Begriff Fenster hat hier keine Bedeutung, er ist einfach Teil des akzeptierten Namens dieser Kurve). Die genaue Form des Blackman-Fensters ist in Kapitel 16 gegeben (Gleichung 16-2, Abb. 16-2), sie sieht jedoch sehr ähnlich wie ein Gaußscher. Wie sind diese Verwandten des gleitenden Durchschnittsfilters besser als der gleitende Mittelfilter selbst? Drei Wege: Erstens, und am wichtigsten, haben diese Filter eine bessere Stopbanddämpfung als das gleitende Mittelfilter. Zweitens verjüngen sich die Filterkerne zu einer kleineren Amplitude nahe den Enden. Es sei daran erinnert, dass jeder Punkt in dem Ausgangssignal eine gewichtete Summe einer Gruppe von Abtastungen von dem Eingang ist. Wenn sich der Filterkern verjüngt, werden die Abtastwerte im Eingangssignal, die weiter entfernt sind, weniger Gewicht als die in der Nähe befindlichen. Drittens sind die Schrittantworten glatte Kurven, und nicht die abrupte gerade Linie des gleitenden Durchschnitts. Diese letzten beiden sind in der Regel von begrenztem Nutzen, obwohl Sie Anwendungen finden könnten, wo sie echte Vorteile sind. Der gleitende Durchschnittsfilter und seine Verwandten sind alle ungefähr gleich, wenn man zufälliges Rauschen reduziert, während eine scharfe Sprungantwort beibehalten wird. Die Mehrdeutigkeit liegt darin, wie die Anstiegszeit der Sprungantwort gemessen wird. Wenn die Anstiegszeit von 0 bis 100 des Schritts gemessen wird, ist der gleitende Durchschnittsfilter das beste, was Sie tun können, wie zuvor gezeigt. Im Vergleich dazu misst die Messung der Risse von 10 bis 90 das Blackman-Fenster besser als das gleitende Mittelfilter. Der Punkt ist, das ist nur theoretische Squabbeln betrachten diese Filter gleich in diesem Parameter. Der größte Unterschied in diesen Filtern ist die Ausführungsgeschwindigkeit. Mit einem rekursiven Algorithmus (beschrieben als nächstes), wird der gleitende Durchschnitt Filter wie Blitz in Ihrem Computer laufen. In der Tat ist es die schnellste digitale Filter zur Verfügung. Mehrere Durchgänge des gleitenden Durchschnitts werden entsprechend langsamer, aber immer noch sehr schnell sein. Im Vergleich dazu sind die Gauß - und die Blackman-Filter quälend langsam, weil sie die Faltung verwenden müssen. Denken Sie einen Faktor von zehnmal die Anzahl der Punkte im Filterkernel (basierend auf der Multiplikation, die etwa zehnmal langsamer als die Addition ist). Beispielsweise erwarten Sie, dass ein 100-Punkt-Gaussian 1000-mal langsamer als ein gleitender Durchschnitt mit Rekursion ist.
No comments:
Post a Comment